Глава 1

КАК СТАТЬ ЭЙНШТЕЙНОМ!

НЕ ПОПРОБОВАТЬ ЛИ ГНИЛЫХ ЯБЛОК?

Я приоткрыла дверь и, стараясь не привлекать к себе внимания, тихонько присела на свободный стул. В небольшой комнате за Т-образным столом сидело человек двадцать. Впрочем, я не успела ни сосчитать присутствующих, ни разглядеть их лиц. Первое, что я услышала, заставило меня вздрогнуть.

— Нет науки психологии, нет науки педагогики, — патетически говорил седой худощавый человек с веселыми глазами.

В какой век я попала?! Ведь психология и педагогика — науки древние… Возможно, я вошла не в ту дверь? Нет, я отчетливо помню укрепленную на ней табличку: «Научный совет по кибернетике при президиуме Академии наук СССР». Именно сюда я шла.

Во главе стола сидит академик Аксель Иванович Берг, председатель Совета. Среди присутствующих знакомые лица, да и оратор, заставивший меня призадуматься, в своем ли я уме, оказался знакомым: видный советский психолог, профессор Николай Иванович Жинкин. Но что он говорит?

— Да, психология как наука не существует. Это расплывчатая кустарная область, далекая от точных наук с их математически четкими формулировками и количественными критериями. Неопределенность позиций — беда не только психологии. Педагогика, медицина, биология ни на шаг не сдвинутся без союза с математикой. Медики и биологи уже сделали выводы, и их наука вступила в фазу расцвета. А у нас картина обратная. Психология как наука чахнет. Высшая школа выпускает по нескольку психологов в год! Это же комариный писк.

Что ждать от этих пискарей?

Все зашумели: это так невероятно, но это так! Профессор Ломов быстро набросал список разветвлений психологической науки: психология зрения, психология речи и памяти, психофизика… Пунктов пятнадцать. Он демонстрирует список присутствующим и комментирует:

— Но ни одно учебное заведение не выпускает таких специалистов. Это серая действительность. Увы, она характерна не только для советской психологии. Разрыв между нами и Западом не велик, у них тоже мало достижений…

— И все-таки в Америке двадцать две тысячи членов Психологического общества, у нас лишь тысяча, — замечает кто-то.

— Естественно, у них выходит и больше книг по психологии! Смотрите, — Ломов показывает великолепно изданную книгу по математической психологии на английском языке, — это вполне современный уровень.

Берг тотчас созванивается с издательством «Мир», чтобы договориться о переводе новой книги. Там, видно, не сразу понимают всю важность заказа, потому что Берг повышает голос:

— Нет, конечно, не следует восхищаться всем, что делается в зарубежной науке, но их опыт необходимо учитывать! Необходимо! Без математической психологии, психологии на современном уровне мы не можем изменить систему обучения. А победит та страна, где лучше поставлено обучение. Вспомните, что говорил Ленин: кадры, кадры решают все! Почему я звоню?

Он закрывает трубку рукой и говорит присутствующим:

— Спрашивают, что общего между психологией и кибернетикой. — И снова в трубку: — Сейчас говорить о научных основах обучения — значит вторгаться в сложнейшие области психологии, физиологии, математики, педагогики. Современное учебное заведение — это тысячи студентов и преподавателей. Это крупное «предприятие», требующее четкой системы управления наиболее сложными процессами — процессами мышления. Без знания законов мышления сейчас уже невозможно совершенствовать систему обучения. А законы деятельности человеческого мозга — сфера кибернетики. Значит, наш Совет должен обеспечить развитие психологии.

Не только психология, но и педагогика лежит в глубоком штиле вот уже двадцатый век. Она почти совсем не изменялась. Как учились наши деды, так учимся и мы. Но если деды и отцы могли пользоваться одними и теми же учебниками, а знаний, приобретенных в молодости, им хватало на всю жизнь, мы, и тем более наши дети, должны учиться непрерывно, до конца дней. Учиться совсем иначе, иными методами, в другом темпе. Ведь сейчас ученику излагают лишь фактические сведения. Его начиняют невероятным объемом информации, но не учат думать.

Бытующий способ преподавания подобен самому примитивному и жестокому способу обучения плаванию: бросить ребенка в воду, пусть сам справляется. Впрочем, доля здравого смысла в таком способе есть: даже если человека ничему не учить, у него все равно накопится жизненный опыт, его мозг сам собой научится думать. Но такой способ — страшное расточительство.

— Мы должны научить человека думать более экономно, — продолжает убеждать кого-то на другом конце провода Берг. — Более эффективно управлять процессом его мышления. Направлять, программировать работу его мозга так, чтобы дистанцию от открытия к открытию он проходил скорее и озарения стали уделом не только счастливых одиночек. Это задача науки об управлении, задача кибернетики, с помощью которой психология и педагогика обретают второе дыхание. Надо учить человека мыслить.

Мы должны всерьез заняться проблемой программированного обучения.

Так на заседании секции психологии Совета по кибернетике я еще раз услышала термин «программированное обучение».

— Я услышал о программированном обучении не многим раньше вас, — говорил мне Берг после заседания, — и, признаться, был покорен этой проблемой. Какое дерзкое намерение — повысить эффективность работы мозга.

Какая это красивая, захватывающая мечта…

Но как управлять неуправляемым, ведь процесс мышления — пока вещь в себе! Какой мудрец может сказать, что делается в голове человека? Человек изучил, понял, создал… А как изучил, почему понял, каким образом создал? До сих пор деятельность человеческого мозга — тайна. Недаром многие ученые называют психику человека «черным ящиком». Действительно, мы ведь до обидного мало знаем самих себя! Почему одни пишут стихи, а другие прозу? Каким непостижимым образом расцветают в нашем мозгу образы и ассоциации? Что означают минуты озарения, вдохновения? Почему мозг иногда изнемогает в поисках решения и вдруг оно является неожиданно и легко?

Я был так захвачен этими вопросами, что решил докопаться до истины, чего бы это мне ни стоило. Понадобятся годы – кладу все мне оставшиеся. Надо будет переучиваться — готов.

Я начал с того, что стал читать воспоминания, мемуары людей творческих профессий — я имею в виду художников, литераторов, ученых, обладающих способностью к большому оригинальному творчеству, то есть созиданию идей. Мне хотелось узнать секрет их деятельности, понять, как возникает искра, воспламеняющая их воображение. Сколько разнообразных «систем зажигания» я обнаружил! Эйнштейн, Бор, Шиллер, Гельмгольц, Чаплин… Какие генераторы творчества!

Вот откровение крупного математика, академика Дородницына:

«Я не поэт и не композитор, поэтому не берусь судить, как вдохновение приходит к ним. Мне понятнее сущность вдохновения в научной работе, — пишет он. — Ученого интересует какая-то проблема, он много над ней думает, постоянно накапливает связанную с ней информацию, ищет пути ее решения. Этот процесс накопления тянется долго — многие месяцы, может быть, годы. Но вот, наконец, накапливаемая информация достигает необходимой полноты, тогда становится ясным путь решения проблемы. Естественно, ученого охватывает при этом чувство радости, переходящее даже в экстаз, он забывает обо всем постороннем, полностью погружается в работу и в течение немногих дней делает то, на что раньше, казалось, безуспешно затратил годы.

Мы говорим о таком состоянии ученого — пришло вдохновение».

К Шиллеру, я читал, вдохновение приходило вместе с запахом гнилых яблок, и он всегда во время работы клал их в ящик стола. Физик Гельмгольц для обдумывания окончательных решений уходил в лес. Хемингуэй работал стоя. А Агата Кристи, говорят, пишет лежа в ванне, и особенно душераздирающие преступления приходят ей в голову, когда рядом с ней стоит ваза с яблоками, правда свежими. Вероятно, можно провести прелюбопытнейшее исследование того, как люди заставляют свой мозг стать послушным инструментом. Но что при этом происходит в голове — мы так и не знаем.

Я слушала Берга, и у меня возникали десятки вопросов.

Действительно, кто может сказать, почему Бетховен написал Лунную сонату, почему так трепетны стихи Тютчева, почему люди плачут над новеллами Пиранделло или музыкой Шопена?.. Почему именно Максвелл понял, что мир пропитан электромагнитной энергией, а Эйнштейн создал теорию относительности?.. Почему Сеченову и Павлову, а не другим физиологам, удалось выведать кое-какие из тайн человеческой психики? Как Басов, Прохоров и Таунс додумались до идеи лазеров и мазеров и почему «несчастливую» тринадцатую задачу Гильберта в течение полувека не мог осилить ни один математик, а решил Владимир Арнольд, в то время студент 4-го курса МГУ?

А ведь зная ответы на эти вопросы, мы смогли бы целеустремленно обучать детей. Создавать Эйнштейнов и Менделеевых, Пушкиных и Гоголей!

Как же мозг проходит дистанцию от незнания к знанию, от открытия к открытию, как он использует полученный опыт?

На мои вопросы Берг только пожал плечами:

— Ясно одно, открытие никогда не приходит в результате систематического развития того, что известно ранее. Самое существенное является в виде скачка, часто в форме внезапного озарения, не имеющего определенных связей с предшествующим. В работе мозга принимают участие как бы два аппарата. Один перерабатывает сведения, известные из предыдущего опыта, строит логические цепи, сопоставляет, классифицирует, анализирует. Другой совершает внезапные скачки, вносит существенно новое, не объединенное с предыдущим закономерными связями. Этот второй аппарат мы называем интуицией. Именно интуиция позволяет перейти от падающего яблока к закону тяготения, от обезьян в клетке к формуле бензольного кольца. Уже Декарт пришел к выводу о том, что открытия есть плод интуиции. Этого же мнения придерживаются многие современные психологи. Но что такое интуиция? Этого, по существу, еще не знает никто. Тем не менее, хотя это и звучит парадоксально, интуицию можно развить. Интуиция рождается и развивается из широких и глубоких познаний в различных, иногда весьма отдаленных областях. И эти ресурсы человеческого мозга неиссякаемы. Творческая потенция у нас неисчерпаема. Еще Павлов говорил, что мозг человека таит в себе столько возможностей, что мы за всю свою жизнь не в состоянии использовать и половину из них. Но, скажите мне, почему один человек может сделать открытие, а другой, работающий в той же области, нет? Скажем, почему Эйнштейн стал Эйнштейном?

Вопрос Берга кого угодно поставит в тупик. Хотелось бы повстречать человека, способного ответить на него. Ведь знаменитый физик внешне ничем особенным не отличался от других людей — милый, симпатичный, застенчивый. Но что за могучий интеллект! Неужели люди никогда не узнают, как работал его мозг, эта волшебная машина? По каким законам? Как формировалось его мышление, в чем особенности его психики? Смешно было бы думать, что можно управлять развитием интеллекта, не зная законов мышления.

— Но ведь можно проследить почти день за днем, как работал Эйнштейн, какие книги читал, какие выводы делал…

— Вот, вот — проклятый вопрос! — какие выводы делал… — подхватывает Берг. — Но почему он делал именно такие выводы, а не другие? Недаром говорят, что теории относительности могло не появиться еще лет сто, не родись человека с воображением Эйнштейна. Ведь все, что знает человек, все, чему научился, что создал, — это результат его воображения. И воображение присуще не только поэту, музыканту, художнику. Пожалуй, больше всего оно необходимо ученому.

Давида Гильберта, знаменитого математика, как-то спросили об одном из его учеников.

— Ах, этот-то? — отозвался Гильберт. — Он стал поэтом. Для математики у него было слишком мало воображения.

Что ж такое воображение? Что такое, наконец, индивидуальность? Кто бы мог на это ответить? А не ответить нельзя, иначе развитие интеллекта по-прежнему будет неуправляемым процессом. Ведь вся история человечества сопровождается борьбой, соревнованием интеллектов, победами, поражениями, драмами идей, муками творчества, соперничеством индивидуальностей…

Воспитание индивидуальностей… Индивидуальный подход к обучению каждого человека — вот новый центр притяжения мыслей Берга.

Свет в его кабинете гаснет глубокой ночью. Берг начинает сначала. Он снова молод, и мозг его молодо и стремительно набирает силы для нового скачка. Берг пока ничего конкретного не предпринимает. Он набирается информации, размышляет…

А размышляя об индивидуализации обучения, он все больше понимает, что этот, казалось, специальный вопрос вырастает в гигантскую проблему духовного развития человечества. Индивидуальный подход к воспитанию приведет к тому, что каждый член общества действительно отдаст ему по способностям, которые до поры до времени дремлют в человеке.

При правильном воспитании и обучении каждый интеллект расцветет в полную силу. А ведь именно в многогранности людских индивидуальностей залог прогресса человечества!

ЕДИНСТВО ПРОТИВОПОЛОЖНОСТЕЙ

Берг — ученый, поэтому питательные соки для своих умозаключений он черпает прежде всего из истории науки. Опыт ученых для него убедительнее опыта людей других специальностей. Он с острым любопытством, под новым углом зрения изучает и сравнивает творчество двух наших современников — двух физиков: французского ученого Луи де Бройля и советского физика академика Игоря Евгеньевича Тамма. Оба примерно одного возраста, их научные взгляды формировались в одно время — первую треть нашего века. Они вошли в физику в самый острый, самый конфликтный период ее истории, когда в сознание ученых настойчиво стучалась теория относительности; когда рождалась новая, квантовая физика, пытающаяся заглянуть в тайны строения материи; когда в жизнь входила электроника — три кита, на которых держатся все великие достижения XX века.

Сферой научных интересов Тамма и де Бройля стал мир невидимых сгустков материи, микромир, познанию которого отдали свои силы Бор, Гейзенберг, Шредингер и другие великие физики.

— Когда я начал заниматься физикой, — рассказывает Тамм, — было всего два элементарных «кирпича» мироздания — электрон и протон. Просто, ясно, хорошо. Но скоро эта идиллическая картина стала нарушаться. Во-первых, электрон попирал привычные законы поведения больших тел, известных физикам. Он вел себя как-то ненормально с точки зрения ученых, привыкших доверять порядку в мире. Вот источник, из которого вылетел электрон. Вот щель, через которую он пролетел. Но заранее предсказать, где, в каком месте искать его за щелью — оказалось невозможным! А если было точно известно положение электрона, то оказывалось невозможным определить его скорость. Возникает какая-то чепуха, недопустимая в мире больших вещей.

О движении планет, о полете простого камня можно писать целые поэмы в формулах и уравнениях, о движении же электронов нельзя с уверенностью сказать почти ничего!

И тем не менее формулы показывают нам, что в микромире так и должно быть; если квантовая теория хочет что-то понять в поведении электронов и других элементарных частиц, она должна отказаться от детального, наглядного описания процессов.

Это было кощунственное для классической физики положение, и оно возмущало ученых старшего поколения — Лоренца, Эйнштейна, Планка. На их глазах исчезала наглядность, столетиями помогавшая ученым в путешествиях по дебрям неведомого. Как же так, недоумевали они, нельзя даже мысленно проследить за траекторией движения электрона! Для этого нужно одновременно знать его положение в пространстве и скорость. А теория объявляет это невозможным. Такое неопределенное поведение частиц даже возведено в ранг принципа…

В научной среде бушевали дискуссии и споры. Если радиоспециалисты тридцатых годов находили общий язык и приходили к взаимопониманию, то в среде физиков царила крыловская ситуация «лебедя-рака-щуки». Одни из них уверовали в полную неопределенность поведения частиц, другие не сомневались, что путь частицы — это реальное перемещение из одной точки пространства в другую. Если бы частица окрашивала свой путь в пространстве, мы видели бы ее след, утверждали они.

— Для меня электрон является частицей, которая в заданный момент времени находится в определенной точке пространства, и если у меня возникла идея, что в следующий момент частица куда-то переместилась, то я должен подумать о ее траектории. Картина, которую я хочу создать себе о явлениях, должна быть совершенно четкой и определенной, — печально говорил на Брюссельском конгрессе в конце 1927 года патриарх физиков, один из последних классиков, Лоренц.

В его сознании не укладывались абстрактные построения, которыми так увлекались молодые.

Но Бору и его последователям неопределенность поведения частиц не казалась ни недопустимой, ни странной. Они видели в этом признак принципиально иной сущности микромира, совершенно новой сферы познания. Точка зрения, которую «боровцы» впоследствии закрепили на Брюссельском конгрессе, торжествует по сей день.

В этом котле и варились два физика молодого поколения: де Бройль и Тамм. Они много ломали головы над новой теорией, которая могла бы разрешить сомнения старой. Их пути в физике очень интересны, но они различны. Вскормленные на одной и той же научной пище, они сегодня придерживаются противоположных мнений. Их мозг из одних и тех же предпосылок делает диаметрально противоположные выводы.

Де Бройль убежден, что траектория, как истинный путь частицы, существует.

— Кто смог бы, — говорит он с надеждой, — с абсолютной уверенностью утверждать, что квантовая физика не возвратится в один прекрасный день, после ряда блужданий, к представлениям объективности, поборником которых до самой смерти оставался Лоренц.

Но Тамм убежден в противном.

— Есть все основания думать, что одновременное точное определение всех трех координат положения частицы принципиально невозможно.

И подчеркивает:

— Целый ряд обстоятельств приводит к убеждению (разделяемому всеми или большинством, в частности и мною), что в физике элементарных частиц необходимо углубление принципа неопределенности.

Даже «необходимо углубление»! И добавляет:

— Сейчас еще неизвестно, в каком направлении пойдет развитие физики элементарных частиц: у каждого работающего в этой области есть излюбленная дорожка. Может оказаться, это бывает в истории науки, что направления, которые кажутся сейчас различными, синтезируются в единую общую картину.

«Единую…» — повторяет про себя Берг и отчетливо сознает: именно в этом сказывается смысл и сила человеческих индивидуальностей, оригинальных разумов. Продвигаясь в разных направлениях, они способствуют выработке единой картины мира. Опровергая, обогащая, дополняя друг друга, они открывают человечеству мир во всем его разнообразии и сложности.

Но как воспитывается человеческая индивидуальность? Этот вопрос настойчиво пульсирует в голове Берга, требуя ответа. Как возникают мощные интеллекты? Можно сказать — их воспитывает школа, они появляются благодаря современной системе образования. Но можно сказать и иначе — не благодаря, а вопреки. Ведь вся современная система образования рассчитана на среднего индивидуума. Считается, что одаренный школьник или студент сам найдет, чем занять себя, как удовлетворить свою любознательность. Отстающему помогут дополнительные занятия и товарищи. В расчет берется средний ученик, то есть несомненное большинство. Да и каким иным может быть подход педагога, перед которым сидят 30–40 учеников?

Но и средний ученик не оправдывает возложенных на него надежд, и он усваивает не все, что отведено ему по программе. Сегодня на уроке он мечтал, вчерашний день пропустил по болезни, завтра у него будет шаловливое настроение, и он захочет мастерить и запускать бумажные ракеты. И вот какие-то куски материала прошли мимо его сознания, образовались невосполнимые пробелы. Мозг не смог логически связать материал, и ни один педагог в мире не сумеет объяснить: когда и что потерял, где и что приобрел его ученик…

Что ж, сила обстоятельств толкает нас к старой системе персональных гувернеров? — может возникнуть вопрос. Несомненно, они как нельзя лучше знали своих учеников, из года в год наблюдали их развитие, знали все их особенности, привычки, слабости. Но где взять столько гувернеров и чему может сегодня научить такой педагог, «мастер на все руки»? Да и где найти педагога, сведущего во всех науках с одинаковой глубиной? Это невозможно!

Значит, противоречие? Для всестороннего развития человеческой личности нужен индивидуальный подход. И в то же время при современной системе образования осуществить это нельзя ни технически, ни принципиально. Где же выход? Где взять, педагогов с неисчерпаемыми знаниями, бездонной памятью, с умением заниматься сразу с большой массой учеников и в то же время с каждым в отдельности, ни на секунду не теряя контроля над развитием мысли ученика, программируя ее течение (поэтому-то и возник термин «программированное обучение»).

Для кибернетика ответ очевиден — таким педагогом в XX веке может быть только кибернетическая машина.

МЕЧТЫ… МЕЧТЫ…

Представьте себе, что человека обучает не педагог, а кибернетическая машина. Конечно, никакая, даже самая умная машина не привьет своему ученику удивительные дары природы: интуицию, воображение. Но она отдает в его распоряжение всю свою эрудицию: распоряжайся, властвуй!

И распоряжаться есть чем. Уже сегодня машина обладает бесценным даром, недоступным человеческому мозгу, — огромной памятью, а будет обладать еще большей, вмещающей все знания, накопленные человечеством за века. Все эти сведения можно разбить на ряд программ: от простых — для учеников, до самых глубоких — для ученых. Сначала она предлагает своему ученику ряд вопросов для выявления уровня его подготовки, усидчивости, она «присматривается» к складу ума своего партнера. Это начальный тест, на основании которого машина будет выбирать программу обучения для данного, конкретного ученика. А затем, проанализировав уровень его знаний, характер его склонностей, она выбирает подходящую программу обучения.

По мере общения ученик задает машине более сложные вопросы. Она переводит его на все более сложные программы обучения. Ученик углубляет свои знания. Чем больше его жадность к новому, тем щедрее машина! Она насыщает сведениями весь объем его любознательности, гибко следит за контурами его интеллекта, развивает его активность и инициативу.

Сейчас речь шла об одном ученике. Но относится это почти к любому количеству — все зависит от совершенства машины. Преимущество кибернетического педагога в том, что он может вести одновременно несколько диалогов, со многими учениками. Чем больше объем памяти машины, тем больше желающих она может обслужить. И дело не только в объеме памяти, но и в многочисленных равноправных устройствах «входов» и «выходов»: микрофонах, в которые ученик будет диктовать свои вопросы (а могут быть не микрофоны, но клавиши или другие устройства, переводящие язык человека на язык машины), экранах, на которых он прочтет ответы машины (а могут быть и не экраны, но телеграфные ленты или иные устройства, переводящие ответ машины с ее языка на человеческий). Чем совершеннее обучающая машина, тем больше независимых каналов общения она будет иметь, тем больше учеников сможет обслужить одновременно (игра идет за счет разницы в быстроте работы человеческого мозга и машины).

Обучающая машина может оказаться незаменимым помощником не только при первых шагах обучения, но и при повышении квалификации. Она сможет помочь ученому на пути к открытию.

Современная наука так сложна, она пустила такие глубокие и далекие друг от друга корни, что не всякий ученый знает, что делает его коллега. А вкусы и склонности у них, как и у всех людей, различны, и каждый, как мы знаем, идет своим путем. Одни пытаются понять тайну микромира, изучая теорию электромагнитного поля, пронизывающего Вселенную. Они заведомо мирятся с тем, что сила этой теории в ее строгой, математической логике, а слабость — в трудности обработки данных эксперимента. Приверженцы этой теории горды тем, что она логически наиболее совершенна и интеллектуально привлекательна. Зато приверженцы другого метода современной физики — теории матриц — щеголяют своей тесной связью с экспериментом. Не всегда их расчеты безупречны с точки зрения чистой математики, зато тесно увязаны с данными эксперимента. И они более практичны: по данным одного эксперимента могут с наибольшей вероятностью предсказать результаты следующего. Они позволяют себе роскошь строить теорию явления, все время сверяя ее с опытом, действуя методом проб и ошибок, ошибок и проб, хотя многое отдали бы за то, чтобы и проб и ошибок было поменьше.

Есть и еще более действенные методы исследования микромира, и успех, конечно, может ждать приверженца любого из них. Но более вероятен он для того, кто объединил бы достоинства и мощь всех современных математических методов.

Как счастлив был бы ученый, имей он возможность быстро испытать много путей и выбрать наиболее правильный! Однако человеческая жизнь слишком коротка, чтобы испробовать достаточно вариантов. Человек может всю жизнь посвятить излюбленной теории и лишь на старости лет убедиться, что она бессильна, а исходные данные выбраны неверно. А сколько он ставил опытов, сколько проводил расчетов, ища ей подтверждение, не находя его, не замечая, что мимо него прошли важнейшие находки, которые открыли бы ему мир чудес.

И вот появляется машина, выполняющая работу за десятерых, нет, за сотню ученых! Машина, с которой ученый перехитрит жизнь, — за короткий срок перепробует десятки методов, осмыслит сотни опытов, сравнит их, взвесит с различных точек зрения!

В будущей кибернетической машине человек приобретет как бы дополнительный участок мозга со всей необходимой информацией. Отнюдь не механизированный справочник или энциклопедию, а подобие умного, наблюдательного, широко эрудированного собеседника (ведь все мы охотно прибегаем к эрудиции более сведущих людей), который следит за всеми изгибами нашего мышления, ведет нас в нужном направлении, стимулируя нашу интуицию и подогревая воображение. Такая машина — олицетворение целого коллектива людей с различными знаниями, способного помочь нам найти путь решения проблемы, научить мыслить более ясно, на более высоком интеллектуальном уровне…

Шестидесятые годы — вот когда идея кибернетической обучающей машины носилась в воздухе. Такая машина, как, впрочем, и педагог, не вкладывает открытие в голову ученика, но она подготавливает мозг к тому, что в нем может родиться новая идея. Работая в тесном контакте с такой машиной, человек пойдет вперед много быстрее, чем пользуясь только книгами или справочниками. И может познать себя несравненно раньше, чем доступно нашему современнику.

Ведь уже в раннем детстве люди проявляют склонность к тем или иным сферам человеческой деятельности. Выявив это, машина будет развивать их индивидуальность. Человеку станет легче выбрать специальность, понять свое призвание, самым эффективным образом отдать свои способности и знания обществу.

Помочь такому сознательному выбору могут электронные вычислительные адаптивные машины. И не столь примитивно, как практикуемые ныне тесты, а как отлично эрудированные наставники, выявляющие всю глубину личности своего ученика.

Вот на каком аспекте кибернетики сосредоточились в середине шестидесятых годов мысли Берга. Он видит в машине-педагоге, кроме универсальных черт, нужных для развития человека в любом обществе, еще и специфику нашей системы образования. Если человек захочет повысить квалификацию, он запишется в «Обучающем Центре» на курс по выбранному предмету. Ему назначат час, и он один или в группе людей своего уровня подготовки начнет работать с машиной. Машина станет для него источником самой новейшей, глубокой, исчерпывающей информации.

Такая система обучения наверняка будет лучше, чем теперешняя. Одно из дополнительных преимуществ — полное отсутствие экзаменов. Зачем экзамены, если машина шаг за шагом контролирует своего ученика в процессе обучения? Она ведь не переведет его на сложную программу, пока не убедится, что усвоена предыдущая, легкая и простая. И хоть перед ней будут тысячи учеников, от этого она не станет менее внимательной. Она способна вести диалог одновременно со всеми. У каждого будет свой канал общения с машиной.

Еще одно важное преимущество обучения у кибернетического педагога: сроки обучения не будут жесткими — способный ученик закончит курс быстрее, а менее способный медленнее, но прочно овладев знаниями. Клеймо «менее способный», обостряющее социальные градации, сотрется, ибо способности, как известно, поддаются развитию.

— Нет, нет, машина, придя в педагогику, не вызовет безработицы. — Берг предчувствует характер возражений. — Она сделает труд учителя более творческим и лишь уничтожит проблему нехватки преподавателей. Сейчас в нашей стране работает два с половиной миллиона педагогов, — Берг, как всегда, начинает со статистики, — и их все еще не хватает. А ведь это значит, что примерно каждый сотый человек — педагог. (Если считать по отношению к трудоспособному населению, то почти каждый пятидесятый!) Так что и по этой причине сильно увеличивать численность преподавателей невозможно. Единственный путь — рационализация и механизация педагогического труда, повышение квалификации педагогов и вооружение их электронными обучающими машинами. Как говорил Суворов — не числом, а умением.

Казалось бы, конец размышлениям, начало делу…

РАЗВЕДКА ПЕРЕД БОЕМ

В 1964 году по предложению министра высшего и среднего специального образования В.П. Елютина был организован Совет по программированному обучению, которому и надлежало возглавить работы в этой области в нашей стране. Руководить Советом поручили академику А.И. Бергу.

Берг действует по привычному плану — сначала разведка! Надо установить, какова ситуация на местах. Где, в каких городах, институтах, лабораториях, кто занимается проблемой программированного обучения. Много ли сделано и что в сделанном полезного, а что вредного. Кому надо помочь, кого остановить или привлечь к делу, кого поправить. Это разведка. А разведка в науке — конференции, симпозиумы, куда съезжаются ученые и рассказывают о том, чем они занимаются и чего удалось достичь. На ошибках учатся все.

Разведка принесла сообщения одновременно обнадеживающие и тревожные. Действительно, идея программированного обучения овладела умами многих педагогов, она проникла в самые отдаленные школы, техникумы, институты. А книг по новому методу нет, и помощи из центра нет, и, честно говоря, не ясно, что такое… программированное обучение.

Где-то упал большой камень светлой мысли, и по воде побежали волны, и докатываются они до самых отдаленных уголков страны, и волнуют, и будоражат, и обнадеживают обещанием перемен…

Предварительный обмен мнениями показал, что в области программированного обучения наступил период «великой» самодеятельности.

Представьте себе, что каждый начал строить для себя космическую ракету: геолог, возжелавший изучить минеральные богатства лунных недр; астроном, увлеченный тайной атмосферы Венеры; физик, решивший обследовать источники космических лучей, и многие другие. Если бы так случилось на самом деле, геолог или астроном должен был бы быть одновременно и главным теоретиком, и главным конструктором, и химиком, и металлургом. Разве эту проблему можно решить на одном энтузиазме и любительстве?! Однако именно такая ситуация сложилась вначале в области программированного обучения.

Именно этого боялся Берг и именно в этом убедился в результате первого, разведывательного периода работы Совета по программированному обучению.

Анализ ошибок — вот намеченный Бергом следующий после разведки шаг. Можно ли, не разобравшись, утверждать, что первые неудачи с обучающими машинами говорят о порочности самого метода? Надо было изучить все данные и лишь затем принимать решение.

После ознакомления не все первоначальные шаги программированного обучения были забракованы взыскательным Бергом. Идея программированного обучения сразу же расколола педагогов на две неравные группы. Большая часть продолжала работать по старинке и выжидала, чем кончатся споры и что получится у меньшинства, на свой страх и риск и в меру собственного понимания творившего программированное обучение, не дожидаясь руководящих указаний. А что в это время делали ученые — цвет педагогической науки — психологи, педагоги, которым надлежало стать во главе движения?

Они спорили. Спорили о том, надо или не надо использовать зарубежный опыт; можно ли что-то делать без теории обучения (а единой теории нет и в ближайшее время не предвидится); правилен ли термин «программированное обучение», и если нет, чем его заменить.

Педагогические школы выясняли отношения, и каждая выдвигала свою теорию, свою версию, свое понимание программированного обучения. Многие предлагали учебники, но не прежнего толка, а новые, так называемые программированные учебники, где материал излагался в такой последовательности, что ученик не мог двинуться дальше, не усвоив предыдущего.

Все это обсуждалось, защищалось, отстаивалось и на конференциях, и все в том же маленьком кабинете Берга в Совете по кибернетике, который стал и опорным пунктом развития работ Совета по программированному обучению. Там непрестанно происходили баталии, камерные бои, расширенные сражения, средние драчки. Признаюсь, я часто забывала о предмете спора, поглощенная бурной игрой темпераментов, просто наблюдая и слушая.

Озадачивал Берг. В этот период он больше молчал — внутренняя работа мысли еще не привела его к окончательным выводам. Он понимал, что неудачи с первыми обучающими машинами — это не просто недоработанные конструкции, примитивные программы. Причина лежала глубже, в фундаментальных пластах проблемы.

Можно ли вообще ставить вопрос о принципиально новом методе развития личности, когда не ясны закономерности этого процесса? Чтобы научить машину формировать мышление ученика, мы сами должны уметь это делать — а умеем ли мы? Знаем ли мы ответ на заколдованный вопрос — как формируется человеческое мышление?

Что говорят по этому поводу специалисты?

Берг жадно отыскивает зарубежные статьи, заметки, любые намеки на уже проведенные в этой области работы. Он много размышляет, взвешивает возможности. Он начинает с азов, вдумывается в особенности педагогики, изучает историю ее возникновения. Однажды я застала его буквально утопающим в ворохе старых журналов.

На мой недоуменный взгляд отвечает:

— «Советская педагогика» за последние сорок лет, с 1925 года! Я лишь сегодня узнал, что такое педагогика. Пе-да-го-ги-ка, оказывается, это наука, об обучении детей, но только мальчиков… Человечество выросло из нее. Нельзя же взрослых людей втискивать в детские платьица. Надо начинать сначала. Поднять науку об обучении на уровень XX века!

Журналы… Учебники по психологии… Монографии… Споры в Совете, возражения, возмущение, недоверие… Все было.

А главное — тянулась нить собственных умозаключений…

К каким же выводам приведут они Берга?

СПАСИТЕЛЬНАЯ АБРАКАДАБРА

Что говорят специалисты о механизме формирования человеческого мышления?

— Как формируется? Очень просто, это выяснил еще Павлов: на основании знакомых образов и аналогий. Новые понятия вырабатываются на основе старых. Новые знания усваиваются с помощью прежних. В эту теорию поверить легко. Она наглядна. Особенно ярко демонстрировал ее сущность человек, который одним из первых заронил в Берга интерес к программированному обучению. Николай Иванович Жинкин любит в ответ на вопрос о механизме мышления произнести скороговоркой какое-нибудь очень длинное и очень мудреное название, например «дезоксирибонуклеиновая кислота», и предлагает при этом:

— Быстро повторите!

И, наблюдая беспомощность собеседника, смеется:

— Вот видите, не можете. Вам нужно время для того, чтобы сознательно или, может быть, не отдавая себе отчета, найти в новом слове знакомые черты, расчленить его на уже известные части. Итак, в первых слогах вам слышится что-то вроде «дезинфекция», потом «рыба», ага, запомнил. Дальше что-то вроде «нуклона», «клеить», затем «кислота». И вот путь к освоению нового названия найден. Только таким путем вы можете усвоить и запомнить.

— А ведь правильно! — смеется в ответ Берг и азартно подбрасывает другие примеры. — Такой механизм запоминания и усвоения незнакомых имен, слов и номеров телефонов для нас органичен. Помню, я никак не мог усвоить имя нового знакомого. Именно потому, что оно казалось очень простым и как-то не за что было зацепиться памяти. Хоть убейте, я не мог запомнить, как зовут этого человека: Василий Владимирович или Владимир Васильевич, и каждый раз путал. И вдруг меня осенило! Да ведь мой новый знакомый «Мигулин — наоборот»!

А имя профессора Мигулина я твердо помнил: Владимир Васильевич. Вопрос был решен.

То, что человеческая психика на пути к новым понятиям, безусловно, опирается на усвоенные старые, для Берга не было открытием. Это подтверждается всем ходом развития науки. Изучая электричество, ученые опирались на свойства жидкостей. Представив себе, как вода проникает сквозь песок, легко перейти к тому, как электроны просачиваются между атомами вещества, образуя электрический ток. Законы движения жидкости легли в основу расчетов электрических проводов.

Чтобы сделать понятным свой расчет орбит планет, Кеплер в 1596 году сооружает модель солнечной системы — пять многогранников, в которые вписываются или вокруг которых описываются орбиты. Правда, теория Кеплера, по существу, не нуждается в моделях, но модель рассматривалась в то время как одно из величайших достижений — она помогала ощутить, «почувствовать» справедливость новой теории.

Не удивительно, что на пути познания мира ученые прежде всего использовали геометрические представления. На более ранней стадии это была геометрия плоского пространства — евклидова геометрия, впоследствии же геометрия неевклидовых искривленных пространств. Ведь и Эйнштейну его воображение подсказало, в сущности, простую, правда гениально простую, идею отождествить наш мир с искривленным неевклидовым пространством.

Геометрическая теория с неожиданной полнотой выразила физическую сущность пространства! Как сказал один ученый, «общая теория относительности представляет собой наиболее выдающийся пример теории, построенной при помощи математической игры в жмурки».

Как видно, человеческое воображение, мышление все время опираются и оглядываются на уже знакомые образы. И вся классическая физика тому чрезвычайно наглядный пример. В течение 20 веков она развивалась на основе уже усвоенных и изученных моделей, образов, аналогий. Если открывалось новое явление, для его объяснения создавали модель, схему, чертеж. Реальным и конкретным еще со времен Декарта считалось лишь то, что можно изобразить «посредством фигур и движений».

Так что, действительно, в «образную» теорию познания верится легко. И все-таки, хотя ученые давно поняли, что ассоциации — основа нашего обучения, сам процесс их образования до сих пор тайна. Много создавалось теорий, гипотез, предположений… Казалось, вот-вот истина дастся в руки. Наткнулись физики на голографию — совсем новый принцип своеобразного фотографирования предметов не в виде зримого образа, а в виде неразличаемого глазом узора световых волн, и сразу же возникла гипотеза — не так ли запоминается виденное в клетках нашего мозга?

Родились электронные вычислительные машины, и вот ученые уже представляют себе, что весь окружающий мир кодируется в неизвестном еще коде нашими органами чувств и так, в закодированном виде, вводится в клетки мозга, как в ячейки машины. И в них, сплетаясь по принципу ассоциативных форм, рождается наш внутренний мир, интеллект, знания. Но все это догадки, предположения, дежурные гипотезы-однодневки. Что происходит в сфере человеческого мышления и как? Вероятно, нет ученого, который бы не воскликнул: «Полцарства за отгадку!»

Но Берг быстро нащупал ахиллесову пяту ассоциативной теории: она не объясняет проникновение человеческого разума за пределы мира ассоциаций! Ну хорошо, когда речь идет о планетах, звездах, легко сказать, что они похожи на холодный или огненный шар. А на что похож электрон, позитрон, нейтрино? Ведь этого не знает ни один человек на свете! Однако, не представляя себе эти «предметы» зрительно, не имея возможности подобрать им ни аналогии, ни образа, физики тем не менее узнали о них очень многое: и величину заряда, и вес, и законы движения. Родилась физика микромира, которая в отличие от физики макромира, физики больших тел, не опирается на повседневный опыт. Как же родилась в мозгу человека физика без образов?

ФОРМУЛЫ УМНЕЕ НАС

Натолкнувшись на этот вопрос, Берг понял, что ответ на него прояснил бы и многое другое. Так как же это произошло? Как объясняют это психологи? Понимание законов жизни микромира вспыхнуло в сознании нескольких физиков как молния, как пожар — внезапно, неотвратимо. Новые законы были странными, почти безумными, но удивительно точно описывали известные факты и предсказывали новые. Это загипнотизировало даже таких закаленных мудрецов, как Эйнштейн и Лоренц, и никто не мог объяснить обаяние и притягательную красоту открывшегося ученым мира, потому что никто не мог понять, как он возник. Можно изложить факты, но объяснить их невозможно.

Вот факты.

В конце XIX века случилось непредвиденное. Максвелл вырвал физику из мира наглядных представлений и вверг ее в мир чистой абстракции. Он понял, что Вселенная пронизана электромагнитными волнами, что свет — одна из разновидностей этих волн, и записал их свойства с помощью четырех удивительно простых на вид уравнений. Но парадокс заключался в том, что и через 30 лет после создания новой теории в ее смысл проникли лишь несколько физиков. Остальным она оставалась чуждой. Даже в наши дни, когда ученые давно освоили максвелловский математический аппарат, никто из них не может ответить на вопрос, что же такое электромагнитные волны, что такое радиоволны? Мы их получаем, применяем, но что это такое — сказать не можем.

Луи де Бройль, который еще в период Первой мировой войны, служа во французской армии радиотелеграфистом, много думал о природе радиоволн, прекрасно сформулировал это положение: «Современные представления не могут служить основой для понимания этих электромагнитных колебаний, которые не сводятся к классическому и наглядному представлению о колебаниях материального тела. Висящие в пустоте, если можно так сказать, они выглядят для непосвященных (а может быть, даже и для физиков) чем-то довольно таинственным».

Что же было требовать от современников Максвелла? Они не могли понять гениального открытия именно потому, что оно вопреки многовековым традициям и идеалам не покоилось на механических движениях и силах.

Величины, изображавшие в математическом аппарате Максвелла электромагнитные волны, не могли быть выражены никакими моделями. Это были лишь математические символы электрического и магнитного полей. В арсенале своего мозга ученые не находили опоры для понимания этих абстрактных величин, не могли почувствовать их физического смысла! И наиболее курьезное в этой истории то, что сам гениальный Максвелл не осознал полностью того, что совершил, и тоже ломал голову над созданием подходящей к его случаю модели.

Как видно, человеческому сознанию, даже открывая новое, очень трудно оторваться от привычных вещей, от уже понятых положений. Мысль не только стремится опереться на старые образы, но и отчаянно цепляется за них. Недаром, придя интуитивно к новым концепциям, ученые часто пытаются трактовать их на уровне тех идей, которые существовали раньше и прочно вошли в учебники или по крайней мере в научные журналы. Лишь когда новые идеи становятся привычными и занимают прочное место в сознании ученых, те удивляются: что же сложного в том, чего они так долго не понимали?

Об открытии Максвелла американский ученый Дайсон говорит: «Физикам потребовалось около тридцати лет, чтобы произвести такие изменения в своем образе мышления. Как только произошли эти изменения, тотчас же обнаружились вся простота и красота уравнений Максвелла и оказалось даже трудно понять, из-за чего поднялась вся суета».

Такую шутку формулы и уравнения играли с учеными не раз. Они уводили их в глубокий тыл противника, в мир загадок и шарад, и бросали там на произвол судьбы. Так было с Дираком в 1928 году, когда созданное им волновое уравнение вдруг подкинуло ему античастицу, и та открыла Дираку, первому на земле человеку, антимир. Дирак не был к этому подготовлен, у него никогда не было такого дерзкого намерения, и он долго не мог объяснить своим коллегам столь неожиданного поведения его уравнения. В течение нескольких лет существовал заговор молчания вокруг находки Дирака, пока он сам не понял поразительного факта: наряду с веществом в мире существует и антивещество.

Так было с Максом Планком, который в 1900 году написал формулу, трактующую процесс передачи энергии от нагретого тела в пространство не сплошным потоком, каким реки несут свои воды, а отдельными порциями — квантами. Квант энергии стал каким-то пугалом, не понятным ни Планку, ни другим ученым. Некоторые из них грозились отречься от физики, если возмутительная теория Планка не будет опровергнута.

И тем не менее этой «возмутительной» теорией, считающейся теперь важной частью фундамента современной науки, ученые пользуются по сей день, и во всех уравнениях квантовой физики присутствует «h» — «постоянная Планка», эта таинственная величина, подлинный смысл которой до сих пор скрыт от ученых.

Как говорил академик Лев Давидович Ландау: «Человек в процессе познания природы может оторваться от своего воображения, он может открыть и осознать даже то, что ему не под силу представить».

«Невозможно избавиться от ощущения, что математические формулы существуют независимо от нас и живут собственной разумной жизнью, что они умнее нас и умнее даже их создателей, ибо мы извлекаем из этих формул даже больше того, что было в них заложено сначала», — так выразил свое изумление Генрих Герц, первым обнаруживший реальное существование радиоволн и тем самым подтвердивший действительную, а не мифическую жизнь четырех уравнений Максвелла.

Итак, разум человека вторгся в мир абстракций, где не всякому понятию можно придать наглядный смысл, где из-под ног ученых уплыла опора в виде известных образов, аналогий, моделей. Физика без образов увела ученых из мира доступных вещей, мира, где изучаемые предметы можно было увидеть, потрогать или представить.

Что же удивительного в том, что даже великие физики с трудом принимали новые идеи.

На что же оперлась мысль ученых в этом зыбком мире абстракций? И не только оперлась, но и повела далеко вперед, обгоняя интеллектуальную незрелость человечества на целые поколения.

Ответ психологов звучит почти мистически: мысль в таких случаях опирается на интуицию. Как художник, пытающийся передать картину природы, берет с палитры то одну, то другую краску, так и физик для построения картины мира пробует ту или иную математическую теорию. При этом он скорее смутно и интуитивно, нежели сознательно, прикидывает, подходящий ли материал избран для этой цели, признается один из физиков.

Может быть, только с первого взгляда это кажется невероятным? Возможно, такое мистическое ощущение возникает именно потому, что математическая, да и всякая другая, интуиция, это удивительное свойство человеческой психики, до сих пор кажется необъяснимой тайной? И хотя человек научился исповедовать природу на языке математики, ученые пока не в силах понять до конца ни физический мир, ни мир математики, ни их сложные, загадочные отношения между собой, особенно сложные в живых существах, а тем более в области высшей нервной деятельности, в царстве мысли. И ни один психолог мира не объяснит нам, как уживаются в человеческом сознании образное и абстрактное мышление, физические понятия и формулы, как переплетаются в нем действительность и воображение…

Как же можно, думает Берг, исходить из того, что мышление опирается только на знакомые образы и аналогии, не учитывая образования в мозгу абстрактных построений?

Его мучают тягостные сомнения…

Если неизвестно, как новые идеи вспыхивают в мозгу человека, как формируются знания, можно ли вообще говорить об оптимизации процесса обучения?.. Если неизвестно, что делается в голове ученика, кто может взять на себя ответственность за составление программы действий мозга? Вся система обучения, все программы, естественно, попадают под подозрение…

Что делать? Как выйти из тупика? Как лучше учить молодое поколение? Надо ли начинать с царя Гороха, учить всему, что учили отцы и деды?

Неспроста, видно, в последнее время все больше ученых высказывается за то, что надо начинать не с арифметики, а сразу с алгебры. Чтобы обучаться новой, квантовой физике, надо ли ученику проходить весь путь от Аристотеля? И не следует ли признать, что, воспитывая мышление на старых идеях, на декартовской системе проверки новых гипотез посредством «фигур и движений», мы искусственно создаем трудности, от которых могли бы избавить наших учеников? Не должны ли педагоги в корне пересмотреть методы и порядок преподавания физических дисциплин? Нужно ли подводить учеников к новой физике, обучая приемам старой, классической, или надо делать это как-то иначе? Ведь, несмотря на то, что теорию относительности, квантовую физику ученые переваривали с трудом, физики уверяют, что со временем основным идеям квантовой механики можно будет обучать школьников. Они станут вполне привычными для широкого общества.

…Все эти вопросы переплетались, расталкивали друг друга, противоречили один другому, путали стройный ход мысли, нарушали планы, все больше усложняли проблему!..

Несомненно было лишь одно: с полной уверенностью на эти вопросы можно будет ответить только тогда, когда станет известно, что делается в голове ученика, в каком порядке «располагаются» мысли, как им удобнее «укладываться», что им легче — цепляться за старые истины или парить в облаках.

Это был настоящий тупик, и многие ученые склонялись к твердому убеждению, что время обучающей машины еще не настало. Пока психика — дремучий лес, обучающая машина несвоевременна. Она имеет право появиться только тогда, когда в саду психологической науки созреет главный плод — теория мышления.

А когда такая теория будет создана?

Может быть, лет через сто…

Ответ психологов — осторожный и слишком трезвый — абсолютно не устраивал Берга.

Ждать сто лет?! С этим не может, не хочет примириться его темперамент. Он мучительно ищет выход из тупика, он хочет примирить непримиримое: намерение и невозможность осуществить его.

Напряжение мысли плодотворно уже тем, что оно действует подобно прессу, выдавливающему изделия четкой формы из безликой массы материала. Из хаоса не связанных между собой идей, предположений, недомолвок под давлением мысли вдруг формируется решение. Пусть это не абсолютное решение, не самый лучший выход из положения — только намек на него, компромисс. Но это всегда сдвигает вопрос с мертвой точки. Берг нащупывает возможные подходы к затруднительной проблеме. Она могла бы быть решена на основе теории, но, если теории нет, нужно опереться на экспериментальный материал. Его подгоняет азарт, трудности воодушевляют. Если теория бессильна, будем допрашивать опыт, будем, будем, будем. Без устали будем продолжать попытки создать адаптивную обучающую машину, настойчиво искать законы мышления, даже если еще нет теории мышления. Сами машины помогут нам создать ее — вот, наконец, окончательный результат его умозаключений.

Как??? Как машина может тут помочь?

Машина должна сама включиться в поиск! Накапливая многолетний опыт работы с различными учениками, прослеживая в своей памяти шаг за шагом пути мыслей тысяч людей, она скопит для ученых уникальный сравнительный материал. Фиксируют же тренеры на кинопленке работу лучших спортсменов и потом шаг за шагом разбирают их движения: здесь спортсмен потерял темп, там сделал рывок, тут неверное движение, сбил ритм, дыхание. Может быть, машина расскажет много интересного о движении мысли на пути овладения знаниями? И перед психологами лягут уникальные графики работы человеческого мозга, которые помогут разгадать тайну разума!

Кибернетика поднимается до уровня двух других феноменальных достижений нашего века — теории относительности и квантовой физики! Если те помогли человеку постигнуть тайны мироздания, понять законы, управляющие движением галактик и звездных миров, привели его в глубины материи, то кибернетика обещает человеку проникнуть в самый заповедный бастион природы: мир человеческого разума, психики, мышления.







 


Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Другие сайты | Наверх